4 research outputs found

    BER Performance Improvement with Joint Angle-Delay-Polarization Estimation of Multipath Channel Parameters

    No full text
    International audienceIn mobile telecommunications, the quality of demodulation is strongly impacted by channel estimation. The Joint Angle, Delay and Polarization Estimation (JADPE) problem is addressed in this paper when a linear uniform array of crossed dipoles is used to measure the signal. The purpose of this paper is to study the high resolution JADPE ESPRIT method for the estimation of the parameters that characterize each path in order to improve channel estimation and demodulation. A complete system simulation (based on TDD-UTRA standard of UMTS) is proposed in order to evaluate performance in terms of channel estimation accuracy and BER. Simulation results show the interest of considering the polarization as a channel parameter in order to increase the performance. Improvement in the path separation and received signal power is obtained and, because of this, channel estimation accuracy and data estimation accuracy are improved as well

    Analysis of Dynamic Behavior of ParReEx Robot Used in Upper Limb Rehabilitation

    No full text
    This paper presents a dynamic analysis of the ParReEx multibody mechanism, which has been designed for human wrist joint rehabilitation. The starting point of the research is a virtual prototype of the ParReEx multibody mechanism. This model is used to simulate the dynamics of the multibody mechanism using ADAMS in three simulation scenarios: (a) rigid kinematic elements without friction in joints, (b) rigid kinematic elements with friction in joints, and (c) kinematic elements as deformable solids with friction in joints. In all three cases, the robot is used by a virtual patient in the form of a mannequin. Results such as the connecting forces in the kinematic joints and the torques necessary to operate the ParReEx robot modules are obtained by dynamic simulation in MSC.ADAMS. The torques obtained by numerical simulation are compared with those obtained experimentally. Finite element structural optimization (FEA) of the flexion/extension multibody mechanism module is performed. The results demonstrate the operational safety of the ParReEx multibody mechanism, which is structurally capable of supporting the external loads to which it is subjected

    A Parallel Robot with Torque Monitoring for Brachial Monoparesis Rehabilitation Tasks

    No full text
    Robots for rehabilitation tasks require a high degree of safety for the interaction with both the patients and for the operators. In particular, high safety is a stable and intuitive control of the moving elements of the system combined with an external system of sensors able to monitor the position of every aspect of the rehabilitation system (operator, robot, and patient) and overcome in a certain measure all the events that may occur during the robotic rehabilitation procedure. This paper presents the development of an internal torque monitoring system for ASPIRE. This is a parallel robot designed for shoulder rehabilitation, which enables the use of strategies towards developing a HRI (human–robot interaction) system for the therapy. A complete analysis regarding the components of the robotic system is carried out with the purpose of determining the dynamic behavior of the system. Next, the proposed torque monitoring system is developed with respect to the previously obtained data. Several experimental tests are performed using healthy subjects being equipped with a series of biomedical sensors with the purpose of validating the proposed torque monitoring strategy and, at the same time, to satisfy the degree of safety that is requested by the medical procedure

    The Efficacity of the NeuroAssist Robotic System for Motor Rehabilitation of the Upper Limb—Promising Results from a Pilot Study

    No full text
    The research aimed to evaluate the efficacy of the NeuroAssist, a parallel robotic system comprised of three robotic modules equipped with human–robot interaction capabilities, an internal sensor system for torque monitoring, and an external sensor system for real-time patient monitoring for the motor rehabilitation of the shoulder, elbow, and wrist. The study enrolled 10 consecutive patients with right upper limb paresis caused by stroke, traumatic spinal cord disease, or multiple sclerosis admitted to the Neurology I Department of Cluj-Napoca Emergency County Hospital. The patients were evaluated clinically and electrophysiologically before (T1) and after the intervention (T2). The intervention consisted of five consecutive daily sessions of 30–45 min each of 30 passive repetitive movements performed with the robot. There were significant differences (Wilcoxon signed-rank test) between baseline and end-point clinical parameters, specifically for the Barthel Index (53.00 ± 37.72 vs. 60.50 ± 36.39, p = 0.016) and Activities of Daily Living Index (4.70 ± 3.43 vs. 5.50 ± 3.80, p = 0.038). The goniometric parameters improved: shoulder flexion (70.00 ± 56.61 vs. 80.00 ± 63.59, p = 0.026); wrist flexion/extension (34.00 ± 28.75 vs. 42.50 ± 33.7, p = 0.042)/(30.00 ± 22.97 vs. 41.00 ± 30.62, p = 0.042); ulnar deviation (23.50 ± 19.44 vs. 33.50 ± 24.15, p = 0.027); and radial deviation (17.50 ± 18.14 vs. 27.00 ± 24.85, p = 0.027). There was a difference in muscle activation of the extensor digitorum communis muscle (1.00 ± 0.94 vs. 1.40 ± 1.17, p = 0.046). The optimized and dependable NeuroAssist Robotic System improved shoulder and wrist range of motion and functional scores, regardless of the cause of the motor deficit. However, further investigations are necessary to establish its definite role in motor recovery
    corecore